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Luteolin supports osteogenic differentiation
of human periodontal ligament cells
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Abstract

Background: Previous research revealed that luteolin could improve the activation of alkaline phosphatase (ALP)
and osteocalcin in mouse osteoblasts. We aimed to determine the effect of luteolin on osteogenic differentiation of
periodontal ligament cells (PDLCs).

Methods: Cultured human PDLCs (HPDLCs) were treated by luteolin at 0.01, 0.1, 1, 10, 100 μmol/L, Wnt/β-catenin
pathway inhibitor (XAV939, 5 μmol/L) alone or in combination with 1 μmol/L luteolin. Immunohistochemical
staining was performed to ensure cells source. Cell activity and the ability of osteogenic differentiation in HPDLCs
were determined by MTT, ALP and Alizarin Red S staining. Real-time Quantitative PCR Detecting System (qPCR) and
Western blot were performed to measure the expressions of osteogenic differentiation-related genes such as bone
morphogenetic protein 2 (BMP2), osteocalcin (OCN), runt-related transcription factor 2 (RUNX2), Osterix (OSX) and
Wnt/β-catenin pathway proteins members cyclin D1 and β-catenin.
Results: Luteolin at concentrations of 0.01, 0.1, 1, 10, 100 μmol/L promoted cell viability, ALP activity and increased
calcified nodules content in HPDLCs. The expressions of BMP2, OCN, OSX, RUNX2, β-catenin and cyclin D1 were
increased by luteolin at concentrations of 0.01, 0.1, 1 μmol/L, noticeably, 1 μmol/L luteolin produced the strongest
effects. In addition, XAV939 inhibited the expressions of calcification and osteogenic differentiation-related genes in
HPDLCs, and 1 μmol/L luteolin availably decreased the inhibitory effect.

Conclusion: 1 μmol/L luteolin accelerated osteogenic differentiation of HPDLCs via activating the Wnt/β-catenin
pathway, which could be clinically applied to treat periodontal disease.
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Introduction
As a common oral disease, periodontal disease is a main
cause to tooth loss and could lead to local or even
systemic effects [1]. Periodontal disease mainly promotes
the regeneration of periodontal tissue, producing a cer-
tain number of healthy periodontal ligament cells
(PDLCs) functioning as the primary basis for the repair
of periodontal disease [2]. Derived from the mesoderm,
PDLCs are the most abundant cells in the periodontal
membrane and also the main cell source for the attach-
ment between gingiva and root surface after periodontal
treatment [3]. Additionally, PDLCs can not only pro-
mote the formation of new main fibers and cementum,
but also play a vital role in the reconstruction of alveolar

bone [4]. The osteogenic differentiation of PDLCs is also
essential in the regeneration of periodontal tissues [5].
Among the conduction pathways, Wnt/β-catenin sig-
naling pathway, which plays a significant role in embry-
onic development, organ formation, tumor formation
and bone reconstruction [6], could activate the expression
of downstream target gene cyclin D1 in the nucleus, pro-
motes the activity of osteoblasts and the mineralization of
extracellular matrix by regulating directional differentiation
of osteoblasts and the expressions of specific genes [7].
It has been reported that luteolin, which often exists

as glycosylation in nature, could affect osteogenic differ-
entiation [8]. Previous studies also showed that luteolin
was a natural tetrahydroxyl flavonoid compound with a
molecular weight of 286.23 kD [9]. luteolin was initially
isolated from the leaves, stems and branches of reseda-
ceae, however, researchers found that luteolin could also
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be extracted from a variety of natural medicinal materials,
vegetables and fruits such as honeysuckle, wormwood,
celery and cabbage [10]. In pharmacology, luteolin is a
multifunctional complex that has a positive medicinal
effect, for example, anti-cancer, anti-inflammatory, regu-
lating immunity function, resisting oxidation and reducing
osteoclast activity [11].
In treating periodontal disease, as auxiliary measures

to oral mechanical treatment, pharmaceutical drugs can
improve therapeutic efficacy. However, some western
medicines such as antibiotics and other commonly used
drugs have certain toxic and side effects, thus, as anti-
biotic resistance becomes stronger, their effectiveness in
treating periodontal disease is limited to some extent
[12]. Studies have proved that various traditional Chin-
ese medicine herbs had specific therapeutic effects on
treating periodontal diseases such as radix scutellariae
[13] and cinnamaldehyde [14].
As luteolin could protect human bronchial epithelial

cells via activating nuclear factor erythroid 2-related
factor 2 (Nrf2) pathway, some scholars believed that
luteolin can be used as a medicine for the prevention
and treatment of lung cancer [15]. Nash et al. [16]
pointed out that the luteolin extracted from tea could
increase the mineral content in human osteoblasts. In
addition, according to the study of Abbasi et al. [17], a
low concentration of luteolin could protected osteoblasts
from oxidative stress induced by high glucose. In dental
field, Liu L et al. [18] found that luteolin could effect-
ively maintain the pluripotency of PDLC by activating
related pathways. Though, studies on the application of
luteolin in osteoblastic cells increased gradually, the ef-
fect of luteolin on osteoblastic differentiation of PDLCs
has not yet been investigated. Therefore, this study
mainly explored the effect of different concentrations of
luteolin on human PDLCs (HPDLCs), and analyzed its
effects on osteogenic differentiation and Wnt/β-catenin
signaling pathway. Our findings provide a new under-
standing on the treatment of periodontal diseases.

Methods
This study was approved by the Ethics Committee of
Yantai Stomatological Hospital, and all donors signed
the informed consent.

Cell culture
HPDLCs were obtained from healthy human third mo-
lars, the teeth came from six donors aged between 18
and 35 years old. All patients had their teeth removed
due to orthodontic requirement, and they did not have
concomitant dental, pulp or periodontal diseases. The
teeth were washed 3 times by sterile phosphate buffer
saline (PBS), and then the periodontal ligament was sep-
arated from the middle third of the root surface using a

blade in an aseptic ultra-clean table, and the PDL was
cut into thin slices of 1 mm3. The PDL tissue was cul-
tured in dulbecco’s modified eagle medium (DMEM,
Gibco, Carlsbad, USA) containing 10% fetal bovine
serum (FBS, Millipore, USA), 100 mg/mL strepto-
mycin and 100 U/mL penicillin (Gibco, USA) at 37 °C
in a humid environment with 5% CO2. HPDLCs pas-
sage was performed by digestion with 0.05% ethylene
diamine tetraacetic acid (EDTA) plus 0.25% trypsin
(Sigma, USA). The medium was changed every 3 days
until the cells were separated from the tissues and
filled 80% of the well plate. Cells used in each experi-
ment came from only one donor from his third to
sixth generations.

Cell identification
To determine the source and characteristic of HPDLCs,
immunofluorescence detection was performed on the
HPDLCs at 3rd passage. Preliminary experimental analysis
showed that 5000 cells per well plate in a 24-well plate
were optimal for cell identification. Briefly, 1.5mL DMEM
medium containing 10% FBS was added into the cells,
which were washed twice by PBS buffer, fixed with 4%
paraformaldehyde for 30min at room temperature and
blocked by human mesenchymal stem cell characterization
kit (Millipore, Billerica, MA, USA). Next, vimentin and cell
keratin (mouse, vimentin BM0135, cytokeratin BM0030, 1:
200, BosterBio, Wuhan, China) were added into the cells
and held overnight at 4 °C. After being rinsed in PBS
buffer for 3 times, the cells were incubated with fluor-
escein isothiocyanate and secondary antibody horserad-
ish peroxidase-conjugated goat anti-mouse IgG (A0216,
1:500, Beyotime, Suzhou, China) at room temperature
for 45 min [19]. Then, the cells were redyed with 4, 6-
diamino-2-phenylindole (DAPi, 1:100, Vector Labora-
tories, Burlingame, CA, USA). Fluorescence microscopy
(BX-41, Olympus Optical, Tokyo, Japan) was used for
image analysis.

Treatment of cells
HPDLCs at a density of 2 × l05/mL were inoculated on
three 96-well plates [20] in an incubator at 37 °C with 5%
CO2 until 70~80% confluence was reached. Each group in
this study had six multiple holes and the surrounding holes
were filled with sterile PBS solution. Luteolin (batch num-
ber: 111520–200,201, purity> 99%, China Food and Drug
Administration, Beijing, China) was dissolved by dimethyl
sulfoxide (DMSO, Sigma, USA), and the different concen-
trations (0.01, 0.1, 1, 10, 100 μmol/L) of luteolin [21, 22],
Wnt/β-catenin pathway inhibitor XAV939 (5 μmol/L,
purity> 98%, Sigma, USA) [23], 1 μmol/L of luteolin in
combination with XAV939 (luteolin was first incubated for
20min and added with XAV939) were added into well
plates and served as positive groups. In addition, untreated
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cells in control group were incubated with PBS buffer and
considered as a negative control, compared with other
groups in this study. The treated cells used in the following
experiments were confirmed by preliminary experiments,
as well as the time frame had the best experimental effect
at the corresponding treatment time.

Cell viability analysis
3-(4),-5-dimethylthiazole-2-acyl)-2, 5-diphenyltetrazole
ammonium bromide (MTT) assay was used to deter-
mine the viability of HPDLCs. After 24, 48 and 72 h of
treatment, 10 μL MTT (1 mg/mL, Sigma, USA) was
added to the cells and held for 4 h in the dark at 37 °C.
Then, the formazan crystals dissolved in 200 mL
DMSO were added to each well and held for 10 min.
Finally, the optical density (OD) of each well was mea-
sured at 490 nm wavelength by enzyme-linked im-
munoassay (ELX808, BioTek, Vermont, USA), and the
average value was calculated.

Alkaline phosphatase (ALP) activity analysis
Alkaline phosphatase (ALP) activity analysis was
conducted to determine the osteogenic differentiation
ability of HPDLCs. Cells were cultured in differentiation
medium (Sigma, USA) containing DMEM medium (10%
FBS), 10− 7mol/L dexamethasone, 50 μg/mL ascorbic acid
Vc and 10mmol/L sodium β-glycerophosphate for 72 h at
37 °C with 5% CO2. After 72 h of incubation, the cells were
rinsed 3 times with PBS buffer and fixed with 4% polyfor-
maldehyde at 4 °C for 10min. Next, BCIP/NBT alkaline
phosphatase coloring kit (Beyotime, Suzhou, China) was
used for ALP staining according to the manufacturer’s
instructions. After being incubated with luteolin for 3 d, the
ALP activity of HPDLCs was measured using ALP kit (Jian-
cheng Bioengineering, Nanjing, China) and enzyme-linked
immunoassay (ELX808, BioTek) at 520 nm wavelength.

Mineralization characteristics analysis
Alizarin Red S staining was used to determine content
of calcified nodules in HPDLCs. The HPDLCs treated
for 24 h were cultured in a 35mm Petri dish containing
differentiation medium, which was changed every 2 days
during 5 weeks. When mineralized nodules were formed,
the cells were fixed with 4% polyformaldehyde for 30
min, stained by 0.1% Alizarin Red S (Sigma, USA) at pH
4.3 for 30 min at room temperature and rinsed with
deionized water. The staining results were observed
under a microscope using a digital camera (Nikon, Japan).
Cetylpyridine chloride (CPC) method was applied to de-
tect the content of calcium deposition, and the absorbance
was measured using a multifunctional microplate reader
(M1000 Pro, TECAN, Switzerland) at 560 nm.

Quantitative polymerase chain reaction (qPCR)
qPCR assay was performed to detect the expressions
of osteogenic differentiation-related genes in HPDLCs.
After 72 h of treatment, Trizol reagent (Invitrogen,
Carlsbad, California, USA) was used to extract the
total RNA from the cells, and the purity and concen-
tration of RNA were determined by spectrophotom-
eter (Nano Drop Technologies ND-1000, Wilmington,
Delaware, USA). Total RNA (1 μg) was extracted and
synthesized into cDNA by performing reverse tran-
scription at 37 °C for 15 min using PrimeScript™ RT
reagent kit (Takara, Japan). SYBR PremixEx Taq Kit
(TaKaRa, Japan) was used to carry out qPCR assays,
and the reaction conditions were set as follows: pre-
denaturation at 94 °C for 30 s, denaturation at 94 °C
for 10 s, annealing at 60 °C for 30 s, extension at 72 °C
for 3 min and final extension at 72 °C for 10 min. The
primer base sequences (Gene Pharma, Shanghai,
China) used were bone morphogenetic protein 2
(BMP2), osteocalcin (OCN), runt-related transcription
factor 2 (RUNX2), Osterix (OSX), cyclin D1 and β-
catenin and listed in Table 1. Each reaction was car-
ried out for three times using glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) as an internal
control, and the data were analyzed by the 2-ΔΔCT

method [24].

Western blotting (WB) analysis
Western blotting (WB) analysis was performed to de-
tect proteins related to osteogenic differentiation and
Wnt/β-catenin pathway. After 3 days of treatment, all
proteins were extracted from cells on ice by RIPA
lysis buffer (Beyotime, Suzhou, China) containing 1
mmol/L phenylmethanesulfonyl fluoride (PMSF) and
centrifuged for 20 min (10,000 g) at 4 °C. Protein con-
tent was determined by bicinchoninic acid (BCA) protein
assay kit (Fude, China). A total of 30 μg protein lysates
were separated by 8% sodium dodecyl sulfate polyacryl-
amide gel electropheresis (SDS-PAGE, Beyotime, China)
and transferred to polyvinylidene fluoride (PVDF, Beyo-
time, China) membrane, which was blocked for 2 h at

Table 1 Primer base sequence
Gene Forward (5′-3′) Reverse (5′-3′)

BMP2 TATTTGGATAAGAACCAGACATTG GAAAGAAGAACAACAAACCATCA

OCN AGCAAAGGTGCAGCCTTTGT GCGCCTGGGTCTCTTCACT

RUNX2 GAGATTTGTGGGCCGGAGTG CCTAAATCACTGAGGCGGTC

OSX ACCTACCCATCTGACTTTGCTC CCACTATTTCCCACTGCCTTG

Cyclin D1 TGATGCTGGGCACTTCATCTG TCCAATCATCCCGAATGAGAGTC

β-catenin AAAATGGCAGTGCGTTTAG TTTGAAGGCAGTCTGTCGTA

GAPDH AACGGATTTGGTCGTATTGG TGGAAGATGGTGATGGGATT
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room temperature in 3% skimmed milk. Primary anti-
bodies (BMP2 (ab14933, 1:2000, abcam, USA; https://www
.abcam.cn/bmp2-antibody-ab14933.html), OCN (ab13420,
1:1000, abcam, USA; https://www.abcam.cn/osteocalcin-
antibody-ocg3-ab13420.html), RUNX2 (ab76956, 1:1000,
abcam, USA; https://www.abcam.cn/runx2-antibody-ab76
956.html), Osterix (OSX, ab22552, 1:2000, abcam, USA;
https://www.abcam.cn/sp7-osterix-antibody-chip-grade-ab
22552.html), cyclin D1 (ab134175, 1:2000, abcam, USA;
https://www.abcam.cn/cyclin-d1-antibody-epr2241-c-termi
nal-ab134175.html), β-catenin (ab8226, 1:2000, abcam,
USA; https://www.abcam.cn/beta-actin-antibody-mabcam-
8226-loading-control-ab8226.html) and GAPDH (ab8245,
1:2000, abcam, USA; https://www.abcam.cn/gapdh-anti-
body-6c5-loading-contr ol-ab8245.html)) were added to
the membrane and held overnight at 4 °C. After washing
the cells with TBST for three times, goat anti-mouse IgG
antibody labeled with horseradish peroxidase (A0216,
1:1000; Beyotime, Suzhou, China; https://www.beyo-
time.com/product/A0216.htm) and goat anti-rabbit
IgG H&L (HRP) (ab205718, 1:2000, abcam, USA;
https://www.abcam.cn/goat-rabbit-igg-hl-hrp-ab20571
8.html) were added and held for 2 h at room
temperature. ECL chemiluminescence kit (Millipore,

USA) was used for the exposure of the membrane,
and Bio-Rad ChemiDoc XRS + Imaging System was
used to analyse the signal intensity of gel band.

Statistical analysis
SPSS 20.0 software was used for statistical analysis.
Metrological data were expressed by mean ± standard
deviation (SD). Before t-test, Shapiro-Wilk method was
used to analyze whether the data in this study conform
to normal distribution and whether the data were in line
with the normal distribution. The difference between
groups was analyzed by t-test or one-way ANOVA with
the LSD test. The difference was defined as statistically
significant when P < 0.05.

Results
Characteristics of HPDLCs and effect of luteolin on cell
activity
The results of immunofluorescence detection showed that
vimentin staining was positive, while keratin staining was
negative in HPDLCs (Fig. 1a). After 24, 48, 72 h of luteolin
treatment, the results of MTT assay showed that luteolin
at different concentrations (0.01, 0.1, 1, 10, 100 μmol/L)
significantly increased the viability of HPDLCs (P < 0.001),

Fig. 1 a Result of immunohistochemical staining in HPDLCs (× 400): vimentin staining was positive but keratin staining was negative. b MTT
assay was performed to detect the effects of luteolin (L) at different concentrations (0, 0.01, 0.1, 1, 10, 100 μmol/L) on the viability of HPDLCs after
24, 48, and 72 h of treatment. **P < 0.001, vs. Control

Quan et al. BMC Oral Health          (2019) 19:229 Page 4 of 10

https://www.abcam.cn/bmp2-antibody-ab14933.html
https://www.abcam.cn/bmp2-antibody-ab14933.html
https://www.abcam.cn/osteocalcin-antibody-ocg3-ab13420.html
https://www.abcam.cn/osteocalcin-antibody-ocg3-ab13420.html
https://www.abcam.cn/runx2-antibody-ab76956.html
https://www.abcam.cn/runx2-antibody-ab76956.html
https://www.abcam.cn/sp7-osterix-antibody-chip-grade-ab22552.html
https://www.abcam.cn/sp7-osterix-antibody-chip-grade-ab22552.html
https://www.abcam.cn/cyclin-d1-antibody-epr2241-c-terminal-ab134175.html
https://www.abcam.cn/cyclin-d1-antibody-epr2241-c-terminal-ab134175.html
https://www.abcam.cn/beta-actin-antibody-mabcam-8226-loading-control-ab8226.html
https://www.abcam.cn/beta-actin-antibody-mabcam-8226-loading-control-ab8226.html
https://www.abcam.cn/gapdh-antibody-6c5-loading-control-ab8245.html
https://www.abcam.cn/gapdh-antibody-6c5-loading-control-ab8245.html
https://www.beyotime.com/product/A0216.htm
https://www.beyotime.com/product/A0216.htm
https://www.abcam.cn/goat-rabbit-igg-hl-hrp-ab205718.html
https://www.abcam.cn/goat-rabbit-igg-hl-hrp-ab205718.html


and no obvious difference was identified in the function of
luteolin at different concentrations on HPDLCs prolifera-
tion at the same time point (Fig. 1b).

Effect of luteolin on osteogenic differentiation of HPDLCs
The data in our study showed that different concentra-
tions (0.01, 0.1, 1, 10, 100 μmol/L) of luteolin significantly
enhanced ALP activity (P < 0.001) and increased the con-
tent of calcified nodules in HPDLCs (P < 0.001). More-
over, low concentration (0.01, 0.1, 1, 10 μmol/L) produced
a stronger effect than high concentration at 100 μmol/L
(P < 0.05) and luteolin at 1 μmol/L had the strongest effect
(Fig. 2a, b and c).

Effects of luteolin on the expressions of genes related to
osteogenic differentiation and Wnt/β-catenin pathway
protein of HPDLCs
Results of qPCR and WB analysis indicated that the rela-
tive mRNA and protein expressions of BMP2, OSX and
OCN were significantly increased by luteolin at concentra-
tions of 0.01, 0.1, 1 and 10 μmol/L (P < 0.001), and the
expression of RUNX2 was greatly increased by luteolin at
concentrations of 0.01, 0.1, and 1 μmol/L (P < 0.05).

However, high concentration of luteolin (100 μmol/L)
had no significant effect on the relative mRNA and
protein expressions of genes related to osteogenic dif-
ferentiation (Fig. 3a, b and c). Thus, 1 μmol/L luteolin
could produce the optimal effect on the osteoblastic
differentiation. Furthermore, the relative mRNA and
protein expressions of β-catenin and cyclin D1 were
significantly increased by 1 μmol/L luteolin (P < 0.001,
Fig. 3d, e and f).

Effect of Wnt/β-catenin pathway inhibitor XAV939 on
HPDLCs
From the data of Alizarin Red S staining assay, 1 μmol/L
luteolin promoted the calcification of HPDLCs (P <
0.001), while XAV939 inhibited the calcification of cells
(P < 0.001). Thus, luteolin could effectively limit the inhi-
biting action of XAV939 (P < 0.001, Fig. 4a and b).

Effect of Wnt/β-catenin pathway inhibitor XAV939 on the
expression of gene related to osteogenic differentiation
The results of qPCR and WB assay showed that 1 μmol/
L luteolin significantly increased the relative mRNA and
protein expressions of osteogenic differentiation-related

Fig. 2 Effect of luteolin (L) on osteogenic differentiation in HPDLCs. The effect of luteolin at different concentrations (0, 0.01, 0.1, 1, 10, 100 μmol/L) on
osteogenic differentiation in HPDLCs were studied by ALP activity (a), calcified nodules formation and calcium deposition (b, c) according to the ALP
and Alizarin Red S staining assay.**P < 0.001, vs. Control. ##P < 0.001, #P < 0.05, vs. L100
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genes (BMP2, OCN, RUNX2 and OSX) (P < 0.001), while
5 μmol/L XAV939 greatly decreased the relative mRNA
and protein expressions of osteogenic differentiation-
related genes (P < 0.001). Moreover, 1 μmol/L luteolin
effectively reduced the inhibitory effect of XAV939
(P < 0.001, Fig. 5a, b and c).

Discussion
HPDLCs, which are abundant in periodontal tissues,
have multi-directional differentiation potential such as
generating fibroblasts and osteoblasts and cementum
cells [25]. Some studies confirmed that bone nodules
could be formed from HPDLCs under certain condi-
tion, and that bone-related proteins such as ALP,
bone sialoprotein, osteocalcin could also be expressed
[26, 27]. Furthermore, previous studies proved that
periodontal tissue regeneration and repair was mainly
dependent on the number and osteogenic differenti-
ation ability of HPDLCs in periodontal tissue [28].
According Sun et al. [29], luteolin could alleviate the
cytotoxicity induced by methylacetaldehyde, thus pro-
tecting MC3T3-E1 osteoblasts cells. Based on these
studies, we speculated that luteolin had an effect of
promoting osteogenic differentiation of HPDLCs. In
addition, we also determined the optimal concentra-
tion of the drug and the related mechanism.
In this study, we investigated the characteristics of

HPDLCs by immunofluorescence detection, the results

revealed that vimentin staining was positive but kera-
tin staining was negative, and our result was in line
with a previous study [30], proving that the cells came
from mesenchyme and the cell source was reliable.
Then, luteolin at different concentrations were added
to the HPDLCs and co-cultured, and the propagation
capacity of the cells was detected by MTT assay. We
found that luteolin at different concentrations could
promote the generation of HPDLCs. However, the
proliferation effect of luteolin on HPDLCs did not
concern drug concentration, which might be explained
by the significant difference in drug concentration
gradient. In the following study, the concentration
gradient can be reduced to the optimal medicine
concentration.
ALP, which is a non-specific phosphomonoesterase,

is generally present in human body, and it is a critical
biomarker reflecting the osteogenic activity of cells. On
the other hand, ALP, which can be used to examine
the osteogenic differentiation function of HPDLCs, also
plays an important role in cell mineralization [31],
similarly, using Alizarin Red S staining is also a method
for the detection of mineralization, especially in the
measurement of late osteoblast differentiation impact
[32]. Study by Lei et al. [33] demonstrated that the pro-
liferation, osteogenic differentiation and mineralization
of osteoblasts could be enhanced under some condi-
tions. The results in our investigation revealed that

Fig. 3 Effect of luteolin (L) on the expressions of genes related to osteogenic differentiation and Wnt/β-catenin pathway protein of HPDLCs. a, b,
c qPCR and WB analyses of osteogenic differentiation-related genes (BMP2, OCN, RUNX2, OSX) and d, e, f the expressions of Wnt/β-catenin
pathway proteins’ (cyclin D1, β-catenin) in HPDLCs with the treatment of luteolin at different concentrations (0, 0.01, 0.1, 1, 10, 100 μmol/L).
**P < 0.001, *P < 0.05, vs. Control. ##P < 0.001, #P < 0.05, vs. L100
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luteolin at different concentrations could promote ALP
activity and calcify nodules formation in HPDLCs, and
that the effect of luteolin at low concentrations (0.01,
0.1, 1, 10 μmol/L) was stronger, suggesting that a
certain dose of luteolin could enhance the effect of
mineralization and osteoblast differentiation in the
cells. In animal models, Kim et al. [34] treated ovariec-
tomized mice with luteolin, and found that luteolin
could obviously increase the density and content of
bone mineral in the femur of mice and reduce osteo-
clast differentiation. HPDLCs may comprise adult stem
cells or subsets and have the effect of promoting osteo-
genic differentiation into osteoblasts under the effect of
luteolin, resulting in a higher ALP activity and the
development of a quantitative content of mineralized
nodules.
Furthermore, qPCR and WB experiments were car-

ried out to determine the expressions of genes.
BMP2 is capable of inducing the differentiation of
undifferentiated mesenchymal stem cells into chon-
droblasts and osteoblasts [35]. OCN is related to

maturation of osteoblasts [36]. RUNX2 plays a sig-
nificant role in the early proliferation of osteoblasts
[37], and OSX is seated downstream of RUNX2 and
also plays a key role in late osteoblastic differenti-
ation and maturation [38]. Jia LI et al. [39] showed
that luteolin could not only promote the osteogenic
differentiation and proliferation of MC3T3-E1 cells,
but also up-regulate the mRNA expression levels of
RUNX2 and OCN. In this study, we demonstrated
that luteolin at 0.01, 0.1, 1 μmol/L increased the
correlative mRNA and protein expressions of BMP2,
OCN, RUNX2 and OSX, and 1 μmol/L luteolin
showed a relatively high performnace. Interestingly,
100 μmol/L of luteolin had no significant effects on
the expressions of all osteogenic indicators, however,
10 μmol/L of luteolin increased the expressions of
BMP2, OCN and OSX but did not have significant
effect on the expression of RUNX2. Similarly, Liu L
et al. [40] also found that luteolin affected the ex-
pressions of multipotent markers in dental pulp cells
in a concentration-dependent manner. This proved

Fig. 4 Effect of Wnt/β-catenin pathway inhibitor XAV939 on HPDLCs (L). a, b Alizarin Red S staining was used to detect the formation of calcified
nodules and calcium deposition in HPDLCs after treatment of 1 μmol/L luteolin, 5 μmol/L XAV939 or the combination of the two. **P < 0.001, vs.
Control. ##P < 0.001, vs. L1 + XAV939
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that luteolin at a certain concentration could activate
osteogenic differentiation of HPDLCs.
As for the Wnt/β-catenin signaling pathway, Ron-

grong et al. [41] discovered that Wnt/β-catenin signal
pathway could activate the expression of BMP2 in oste-
oblasts. This study indicated that luteolin at 1 μmol/L
had the strongest effect on promoting osteogenic dif-
ferentiation and it could obviously stimulate the pro-
duction of β-catenin and cyclin D1, suggesting that
luteolin might promote HPDLCs differentiation into
osteoblasts via activating the Wnt/β-catenin pathway.
To further test our speculation, we used Wnt/β-catenin
pathway inhibitor (XAV939) to cultivate HPDLCs, and
the result showed that XAV939 decreased the amount
of calcified nodules and the expressions of genes re-
lated to osteogenic differentiation. Moreover, luteolin
was found to relieve the inhibitory action of XAV939.
According to the study data of Tian et al. [42],
XAV939 decreased the death of neuroblastoma cell
lines via controling the Wnt/β-catenin pathway by
blocking the signal pathway. Fujita et al. [43] also
pointed out that XAV939 promoted the differentiation
and maturation of osteoblasts in mice, which was
reflected in the accessorial expressions of osteoblast-
related genes. These results verified that the inhibition
of Wnt/β-catenin could limit the differentiation of cells
into osteoblasts.

Conclusions
In conclusion, luteolin at certain concentrations could
promote the proliferation and osteogenic differentiation
of HPDLCs, increase the expressions of genes related to
osteogenic differentiation and activate the Wnt/β-ca-
tenin pathway, noticeably, 1 μmol/L of luteolin had the
strongest effect. Therefore, we recommended that
luteolin of 1 μmol/L could be served as an optimal con-
centration to accelerate osteogenic differentiation of
HPDLCs via activating the Wnt/β-catenin pathway.
Thus, our results contribute to the clinical application
of periodontal disease.
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